Efficient Uncertainty Modeling for System Design via Mixed Integer Programming

Zichang He, Weilong Cui, Chunfeng Cui, Timothy Sherwood and Zheng Zhang

Uncertainty is Unavoidable!

of fabricated chips are

30% slower or consume 10X more standby power [Miranda 2012]

87

Average project time spent in verification:

in 2014 and growing [Foster

2015]

Works on Architecture Uncertainty

 [Cui and Sherwood, MICRO'17] Estimating and understanding architecture risk

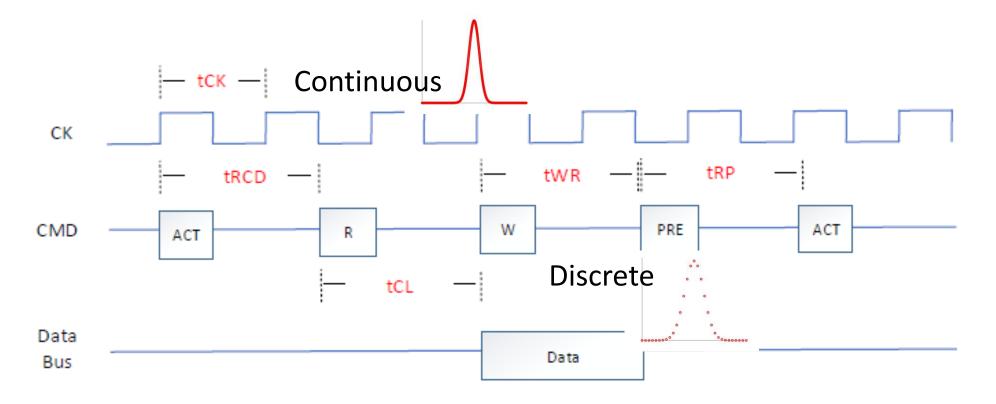
Projection Uncertainty: Unknown from application space Design Uncertainty: Unknown from design space Process Uncertainty: Unknown from manufacture process

• [Cui et al., ISCA'18] Charm: A Language for Closed-form High-level Architecture Modeling (open source package)

....

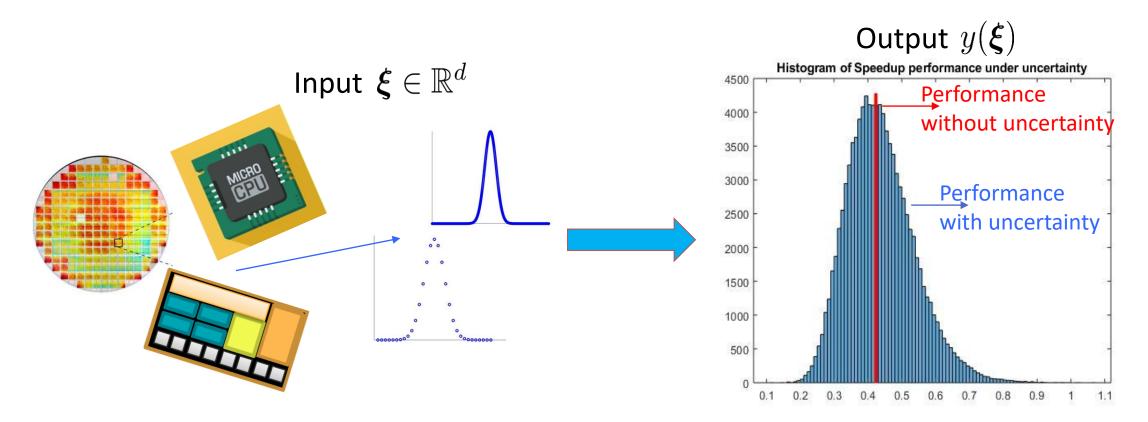
• [He et al., ICCAD'19 (this work)] Mathematical methodology to analyze and quantify the architecture uncertainty.

Example of Uncertain Architecture



In a DRAM system, timing parameters may be inaccurate as designed. To represent the uncertainty, mixed-type random variables: tCK is continuous, others are discrete.

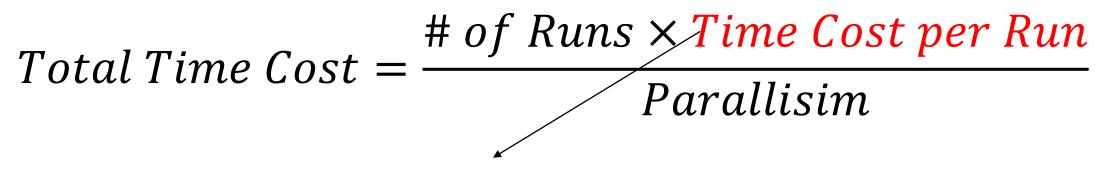
Uncertainty Quantification: Motivation



Not to eliminate uncertainty, but to know how uncertainty will influence the system: output statistical moments and the shape of distribution

Bottlenecks in Architecture UQ

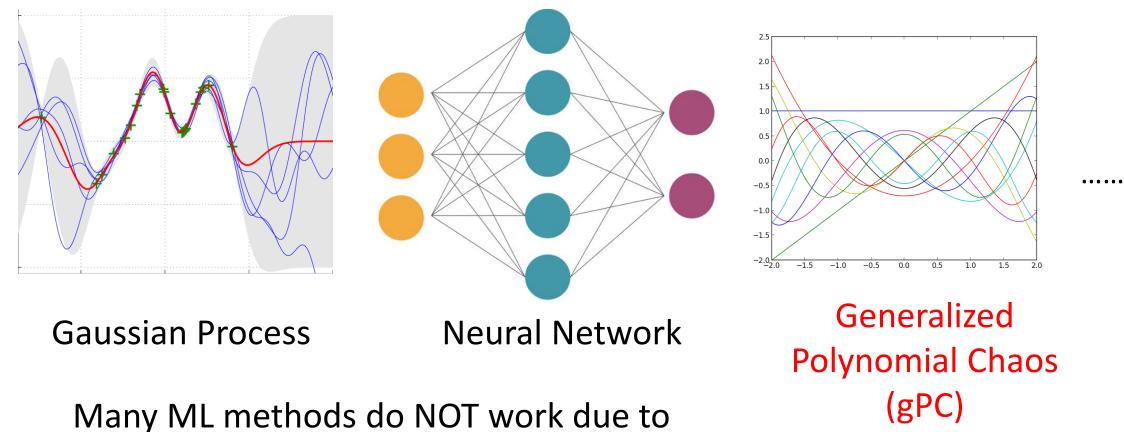
1. Cycle-level simulations are usually very expensive: Monte Carlo is unacceptable.



Several Mins, Hours or even Days!

2. The mixed-integer constraint is hard for UQ solver.

Solution: surrogate modelling



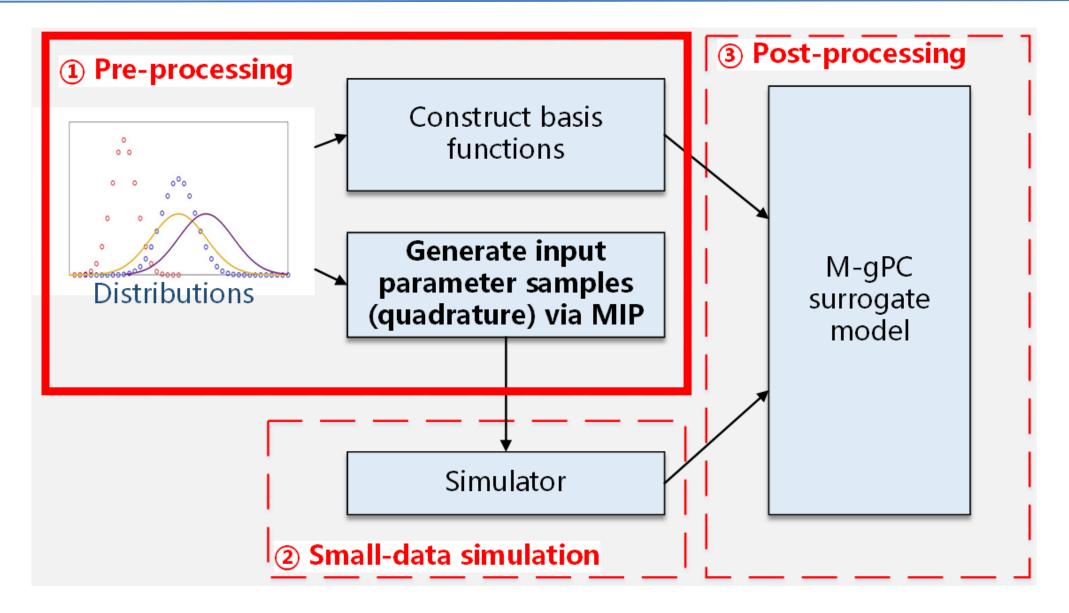
limited samples & integer samples!

gPC expansion: Orthogonal basis functions + Coefficients,

Classical gPC is NOT enough to solve previous two bottlenecks: 1. Curse of dimensionality $((P + 1)^d)$

2. No integer sampling rule

Proposed M-gPC framework

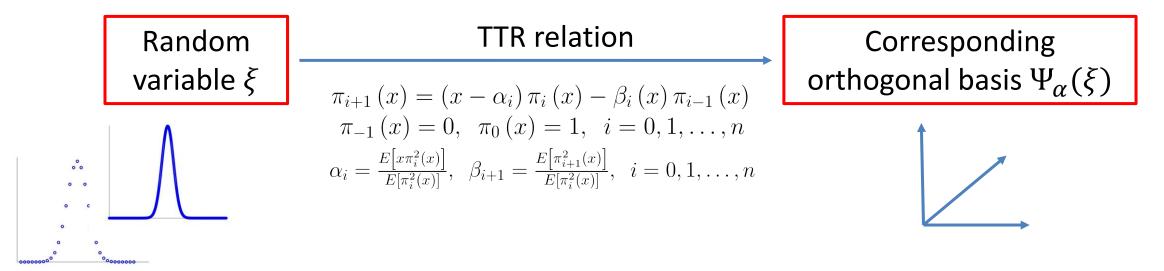


Pre-processing: Basis construction

Model uncertainty as random variables

$$[\xi_1,\xi_2,\xi_3,\ldots\xi_d]$$

Construct basis function via three term recurrence [Gautschi, 1982]



Pre-processing: How to get coefficients

$$y(\xi) \approx \sum_{|\alpha|=0}^{P} c_{\alpha} \Psi_{\alpha}(\xi)$$

To estimate coefficients, some testing samples are needed to calculate numerical integration.

$$c_{\alpha} = \mathbf{E} \left[y\left(\xi\right) \Psi_{\alpha}\left(\xi\right) \right] \approx \sum_{i=1}^{M} y\left(\xi_{i}\right) \Psi_{\alpha}\left(\xi_{i}\right) w_{i}$$

How to determine **efficient** & **mixed-type** samples?

Pre-processing: MIP-based Quadrature

Orthogonality \rightarrow Formulate an optimization problem:

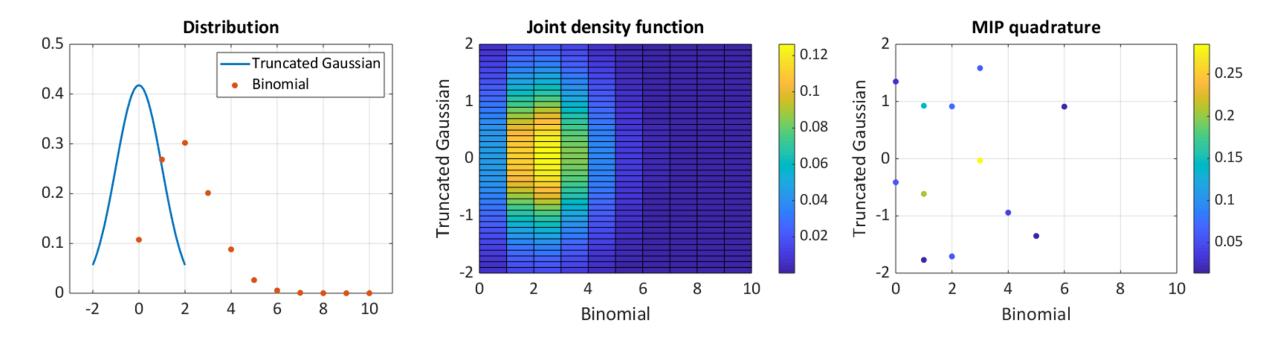
$$\min_{\bar{\xi},\mathbf{w}} \| \Phi(\bar{\xi})\mathbf{w} - \boldsymbol{e} \|_{2}^{2}, \quad \text{s.t.} \quad \mathbf{w} \ge 0, \ \bar{\xi}\mathcal{I} \in \mathbb{Z}^{M|\mathcal{I}|}.$$

Challenges:

- 1. Large-scale: M x (d+1) unknown
- 2. Nonlinear: High order polynomial
- 3. Mixed-Integer constraints (unavoidable obviously)

We proposed a MIP-based solver to handle the former two!

Pre-processing: MIP-based Quadrature



E.g. Two uncertain inputs (one truncated Gaussian & one Binomial), 2th M-gPC order \rightarrow 12 samples are needed

Pre-processing: MIP-based Quadrature

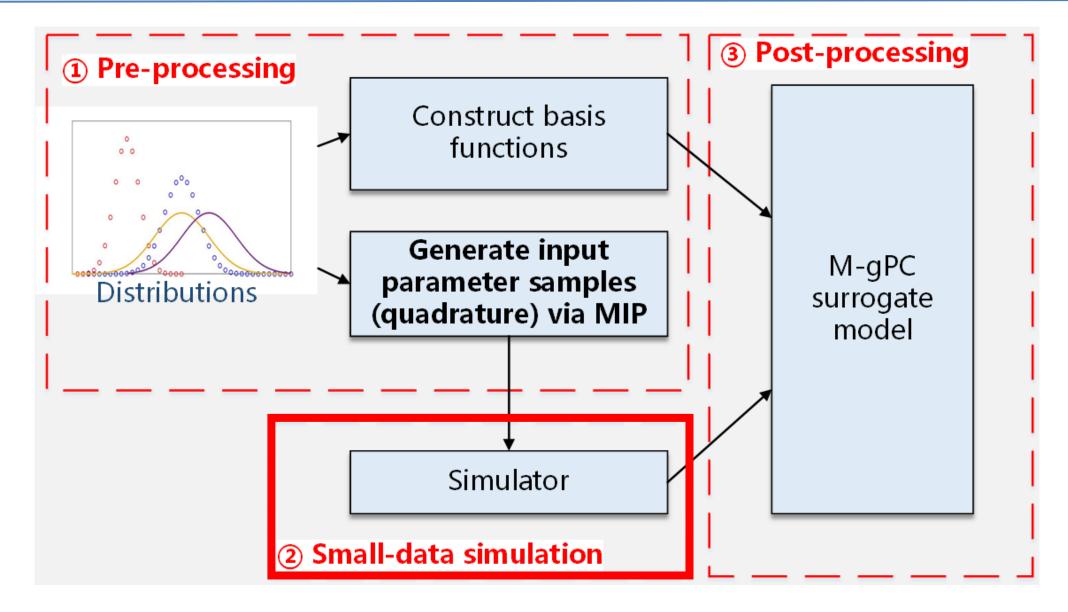
Theoretical guarantee on the # of needed samples:

$$\frac{(d+P)!}{d!P!} \le \# \le \frac{(d+2P)!}{d!2P!}$$

Much smaller than $(P + 1)^d$ when d is large

We also have theoretical guarantee on surrogate approximation, see in [Cui and Zhang, 2018]

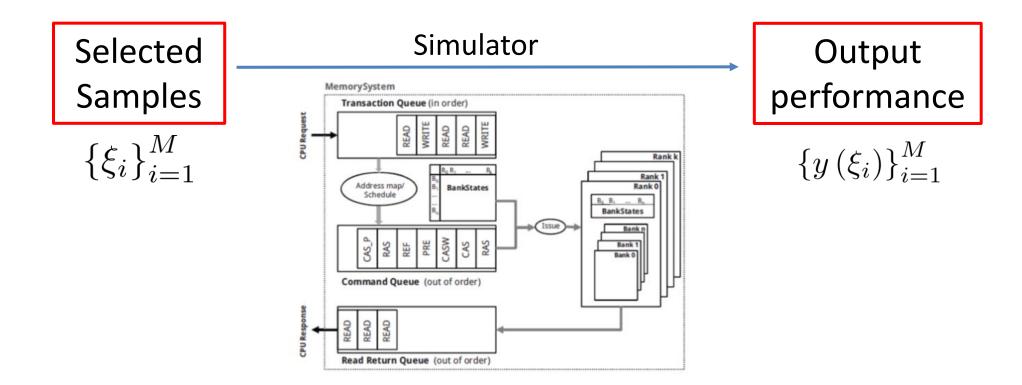
Proposed M-gPC framework



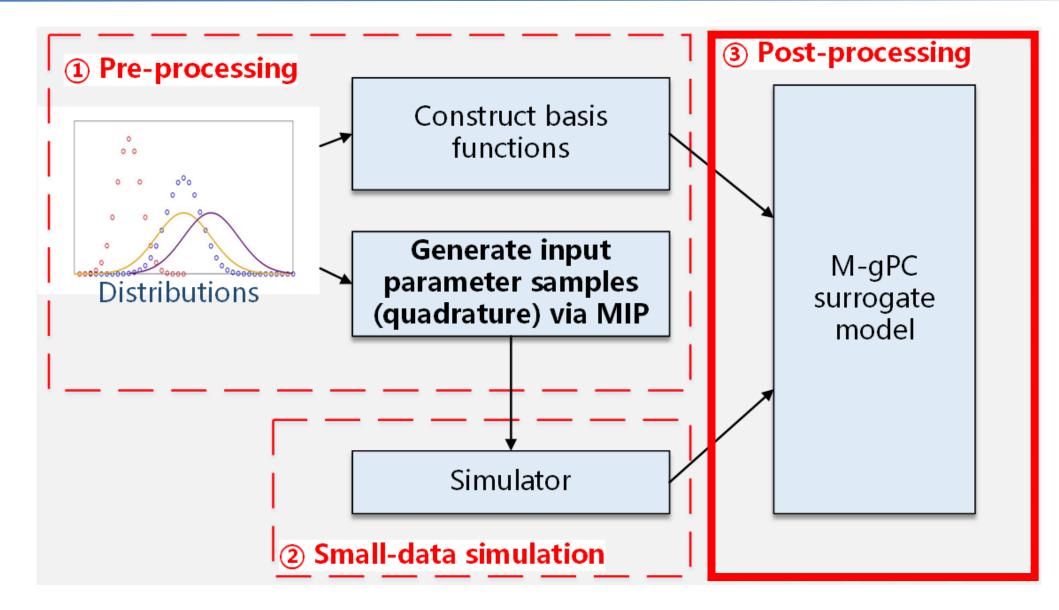
M-gPC: Simulation

$$c_{\alpha} = \mathrm{E}\left[y\left(\xi\right)\Psi_{\alpha}\left(\xi\right)\right] \approx \sum_{i=1}^{M} y\left(\xi_{i}\right)\Psi_{\alpha}\left(\xi_{i}\right)w_{i}$$
simulation (M samples)

Small-data simulation (M samples)



Proposed M-gPC framework

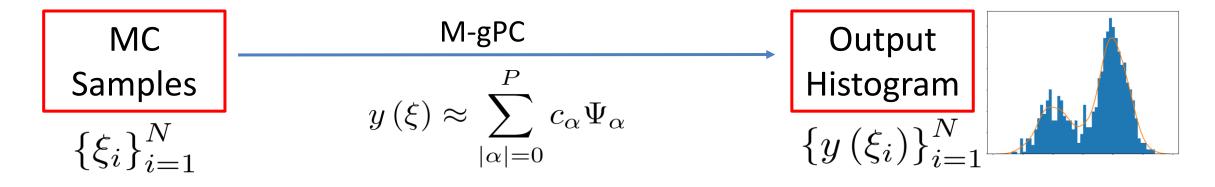


Once M-gPC model is built, output moments are calculated for FREE from the M-gPC coefficients:

$$\mathbb{E}[\mathbf{y}(\xi)] \approx \mathbf{c_0}, \quad \sigma[\mathbf{y}(\xi)] \approx \sqrt{\sum_{|\alpha|=1}^{p} \mathbf{c}_{\alpha}^2},$$

Bonus: FREE Sobol global indices based on coefficients

Cheap Monte Carlo simulations \rightarrow output distribution shape

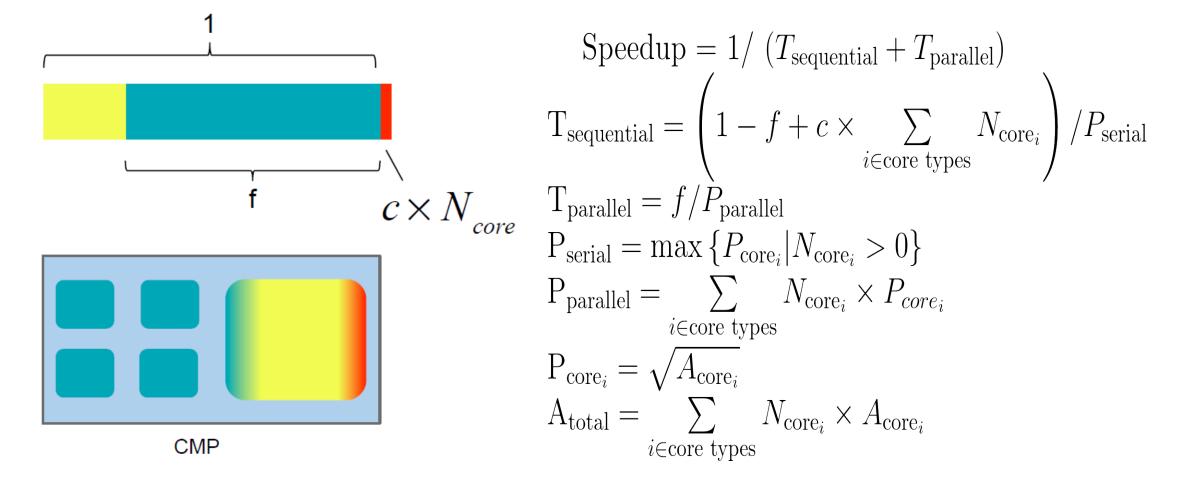


With M-gPC surrogate, no cycle-level simulation any more: Mins/Hours/Days \rightarrow Much Less than Seconds!

Experiments

Experiment: Analytical CMP model

Modeling from existing works [Hill and Marty, 2008; Cui and Sherwood, 2017]:



Experiment: Analytical CMP model

Uncertain inputs	Meaning
$f \sim \frac{\text{Binomial}\left(M,p\right)}{M}$	Inputs parallelism of the application
$c \sim \frac{\text{Binomial}(M, p)}{M}$	Communication overhead among cores
$N_{core_i} \sim Binomial\left(M, yield_{core_i}\right)$	Designed number of each chip
$P_{core_i} \sim Truncated Gaussian(\mu, \sigma, 0)$	Performance of each core

Speedup = $1/(T_{\text{sequential}} + T_{\text{parallel}})$ $\mathbf{T}_{\text{sequential}} = \left(1 - f + c \times \sum_{i \in \text{core types}} N_{\text{core}_i}\right)$ $T_{\text{parallel}} = f/P_{\text{parallel}}$ $P_{\text{serial}} = \max \left\{ P_{\text{core}_i} | N_{\text{core}_i} > 0 \right\}$ $P_{\text{parallel}} = \sum N_{\text{core}_i} \times P_{core_i}$ $i \in \text{core types}$ $P_{\text{core}_i} = \sqrt{A_{\text{core}_i}}$ $A_{\text{total}} = \sum N_{\text{core}_i} \times A_{\text{core}_i}$ $i \in \text{core types}$

Results: Analytical CMP model

	Sample	Mean	Std	RMSE	MAE	ε	
M-gPC	84 85 87 95 123 179	0.4353 0.4382 0.4380 0.4376 0.4376 0.4386	0.1021 0.0974 0.0992 0.0986 0.0987 0.0982	0.0418 0.0338 0.0306 0.0306 0.0314 0.0289	0.0311 0.0231 0.0208 0.0228 0.0233 0.0205	1e-2 1e-3 1e-4 1e-5 1e-6 1e-7	More than 800 times
MC	182 1e3 5e3 1e4 5e4 1e5	0.4387 0.4369 0.4370 0.4383 0.4375 0.4377	0.0975 0.1011 0.1002 0.0995 0.099 0.0987	0.0294 N/A	0.0214 N/A	1e-8 N/A	speedup

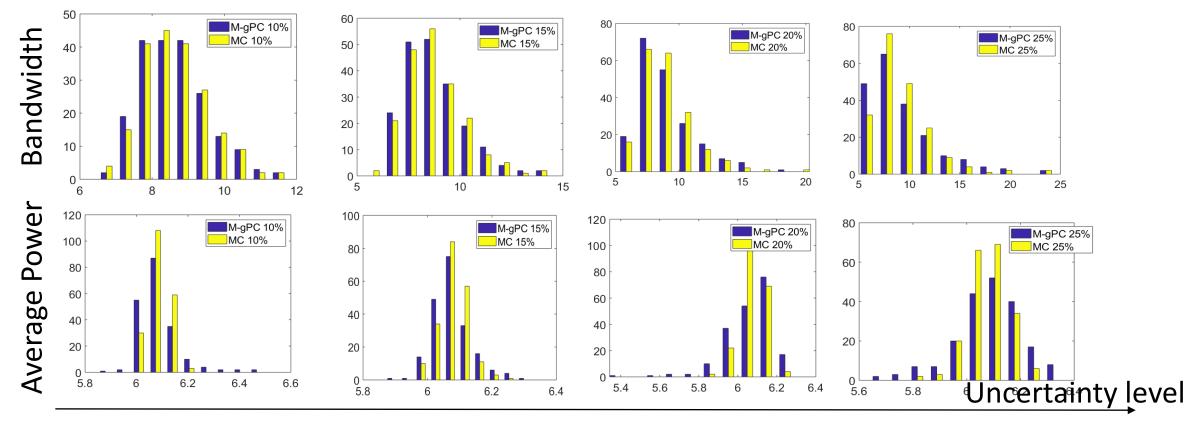
Experiment: DRAM subsystem

Uncertain inputs	Meaning		
tCK ~ Truncated Gaussian $(\mu, \sigma, 0)$	One tick of Clock		
$\mathrm{tRCD}\sim\mathrm{Binomial}\left(M,p\right)$	Clock cycles between active and read/write		
$tCL \sim Binomial(M, p)$	Clock cycles of read delay		
$\mathrm{tRP}\sim\mathrm{Binomial}\left(M,p\right)$	Clock cycles between pre- charge and active		
$\mathrm{tWR}\sim\mathrm{Binomial}\left(M,p\right)$	Clock cycles between write and pre-charge		

Setup: DRAMSim2 Simulator; Output: Bandwidth & Average Power Experiments different uncertainty levels, configurations & workloads

DRAM Results: different uncertainty levels

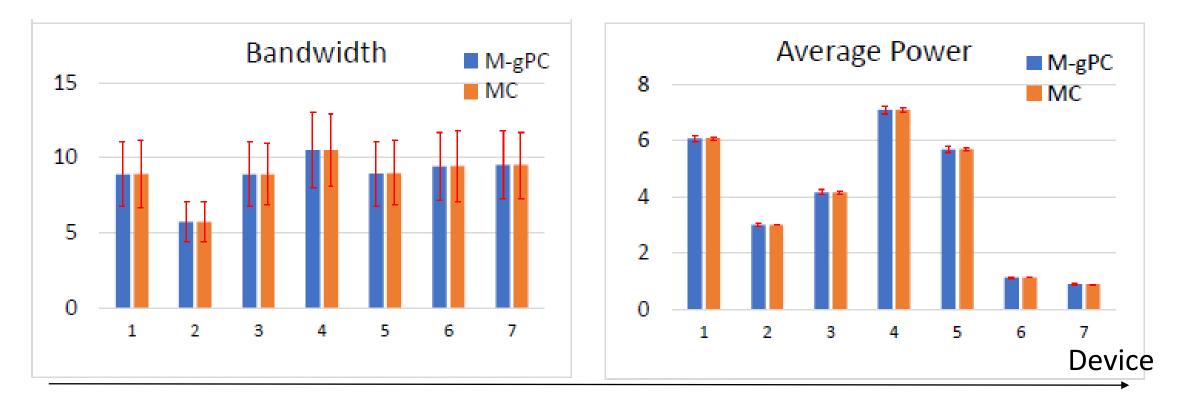
Higher uncertainty levels α , higher standard deviation $\sigma : \sigma = \alpha \times \mu$



*

Approximation is more accurate under less uncertainty. For larger uncertainty, we can increase M-gPC order.

DRAM Results: different configs



Moments are estimated accurately RMSE varies in 1%-4%, MAE varies in 0.8%-2.4%

DRAM Results: different workloads

	Workloads	peribench	gcc	mcf	xalancbmk	x264	deepsjeng	leela	specrand
	Mean (M-gPC)	7.2847	8.9289	6.4874	7.8169	7.3144	7.1424	7.1413	7.2011
	Mean (MC)	7.2834	8.9332	6.4868	7.8201	7.3146	7.1434	7.1422	7.2047
Bandwidth	Std (M-gPC)	1.7545	2.0969	1.5718	1.8619	1.747	1.7194	1.7142	1.7318
(GB/s)	Std (MC)	1.7875	2.1479	1.6026	1.9002	1.7794	1.7538	1.7503	1.772
	RMSE	0.0318	0.0322	0.0319	0.0321	0.032	0.0319	0.0319	0.0319
	MAE	0.0186	0.0185	0.0185	0.0185	0.0187	0.0185	0.0185	0.0187
	Mean (M-gPC)	5.6782	6.0804	5.3127	5.7486	5.3717	5.5257	5.4308	5.5089
	Mean (MC)	5.6796	6.0831	5.3149	5.7517	5.3731	5.5281	5.4333	5.5112
Average	Std (M-gPC)	0.2159	0.1362	0.2168	0.1832	0.1871	0.2073	0.1934	0.2113
Power (watts)	Std (MC)	0.18	0.0817	0.1858	0.1428	0.1486	0.1732	0.1605	0.1773
	RMSE	0.0123	0.0124	0.0121	0.0122	0.0123	0.0121	0.0121	0.0125
	MAE	0.0094	0.0096	0.0093	0.0093	0.0094	0.0093	0.0093	0.0096

*

Moments are all well captured with small RMSE & MAE

DRAM Results: time on different workloads

Workload Leng	th of trace MC tim	e M-gPC time	² 3-4 times
L	46.8M ~15.11 35.7M ~8.8h		SUCCUUD.
0	~ 0.011 ~ 0.011 ~ 0.011 ~ 14.71		
	42.9M ~12.6l 30.5M ~9h		
	$37.6M$ ~ 12.31		accurate ivi
	$36.1M \sim 11.61$ $32.9M \sim 10.61$		

High accuracy MC is too expensive

Low accuracy MC simulations need much more samples to achieve the similar M-gPC accuracy

Uncertainty in architecture design is important

M-gPC surrogate model for expensive cycle-level simulator: much less samples and mixed-type sampling:

- Model speedup: 800x in an analytical example.
- In DRAM, a few samples to get accurate statistical information, while MC is impossible

Thank you! Questions?