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Uncertainty is 
Unavoidable!
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>50% of fabricated chips are 

30% slower or consume 10x more 

standby power [Miranda 2012]

Uncertainty in real architecture 
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Average project time spent in verification: 

57% in 2014 and growing [Foster 

2015]

Uncertainty in real architecture 
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• [Cui and Sherwood, MICRO’17] Estimating and understanding architecture 
risk

Projection Uncertainty: Unknown from application space

Design Uncertainty: Unknown from design space 

Process Uncertainty: Unknown from manufacture process

• [Cui et al., ISCA’18] Charm: A Language for Closed-form High-level 
Architecture Modeling (open source package)

......

• [He et al., ICCAD’19 (this work)] Mathematical methodology to analyze and 
quantify the architecture uncertainty. 

Works on Architecture Uncertainty
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In a DRAM system, timing parameters may be inaccurate as 
designed. To represent the uncertainty, mixed-type random 
variables: tCK is continuous, others are discrete.

Example of Uncertain Architecture

Discrete

Continuous
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Not to eliminate uncertainty, but to know how uncertainty will 
influence the system: output statistical moments and the shape 
of distribution

Uncertainty Quantification: Motivation

Input Performance 
without uncertainty

Performance 
with uncertainty

Output
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1. Cycle-level simulations are usually very expensive: 
Monte Carlo is unacceptable.

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡 =
# 𝑜𝑓 𝑅𝑢𝑛𝑠 × 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑅𝑢𝑛

𝑃𝑎𝑟𝑎𝑙𝑙𝑖𝑠𝑖𝑚

2. The mixed-integer constraint is hard for UQ solver.

Bottlenecks in Architecture UQ

Several Mins, Hours or even Days!
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Solution: surrogate modelling

Gaussian Process Neural Network Generalized 
Polynomial Chaos 

(gPC)

……

Many ML methods do NOT work due to 
limited samples & integer samples!
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gPC expansion: Orthogonal basis functions + Coefficients, 

Solution: gPC expansion

𝑐1 𝑐2

𝑐𝛼

Ψ1(𝜉)

Ψ2(𝜉)

Ψ𝛼(𝜉)

Classical gPC is NOT enough to solve previous two bottlenecks:
1. Curse of dimensionality ((𝑃 + 1)𝑑)
2. No integer sampling rule
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Proposed M-gPC framework
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Model uncertainty as random variables

Pre-processing: Basis construction 

Random 
variable 𝜉

Corresponding 
orthogonal basis Ψ𝛼(𝜉)

TTR relation

Construct basis function via three term recurrence [Gautschi, 1982]
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To estimate coefficients, some testing samples are needed 
to calculate numerical integration.  

Pre-processing: How to get coefficients 

How to determine efficient & mixed-type samples?
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Orthogonality → Formulate an optimization problem:

Pre-processing: MIP-based Quadrature 

=

Challenges: 
1. Large-scale: M x (d+1) unknown
2. Nonlinear: High order polynomial
3. Mixed-Integer constraints (unavoidable obviously)

We proposed a MIP-based solver to handle the former two!
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Pre-processing: MIP-based Quadrature 

E.g. Two uncertain inputs (one truncated Gaussian & one 
Binomial), 2th M-gPC order → 12 samples are needed
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Pre-processing: MIP-based Quadrature 

Theoretical guarantee on the # of needed samples:

Much smaller than (𝑃 + 1)𝑑 when d is large

We also have theoretical guarantee on surrogate approximation, 
see in [Cui and Zhang, 2018]
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Proposed M-gPC framework
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Small-data simulation (M samples)

M-gPC: Simulation

Selected 
Samples

Output 
performance

Simulator
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Proposed M-gPC framework
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Once M-gPC model is built, output moments are calculated for 
FREE from the M-gPC coefficients:

M-gPC: Post-processing

Bonus: FREE Sobol global indices based on coefficients
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Cheap Monte Carlo simulations → output distribution shape 

M-gPC: Post-processing

MC 
Samples

Output 
Histogram

M-gPC

With M-gPC surrogate, no cycle-level simulation any more: 
Mins/Hours/Days → Much Less than Seconds!
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Experiments
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Modeling from existing works [Hill and Marty, 2008; Cui and Sherwood, 2017]:

Experiment: Analytical CMP model 
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Uncertain inputs Meaning

Inputs parallelism 
of the application 

Communication 
overhead among 

cores 

Designed number 
of each chip

Performance of 
each core

Experiment: Analytical CMP model 
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Results: Analytical CMP model 

More than 
800 times 
speedup
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Setup: DRAMSim2 Simulator; Output: Bandwidth & Average Power 

Experiments different uncertainty levels, configurations & workloads

Experiment: DRAM subsystem
Uncertain inputs Meaning

One tick of Clock

Clock cycles between 
active and read/write

Clock cycles of read delay

Clock cycles between pre-
charge and active

Clock cycles between 
write and pre-charge
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DRAM Results: different uncertainty levels
Higher uncertainty levels 𝛼, higher standard deviation 𝜎 : 𝜎 = 𝛼 × 𝜇

Approximation is more accurate under less uncertainty. For larger 
uncertainty, we can increase M-gPC order.

Uncertainty level
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DRAM Results: different configs

Moments are estimated accurately
RMSE varies in 1%-4%, MAE varies in 0.8%-2.4%

GB/s Watts

Device
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DRAM Results: different workloads

Moments are all well captured with small RMSE & MAE 



30

3-4 times 
speedup, 
will be larger 
for more 
accurate MC 
simulation

DRAM Results: time on different workloads

High accuracy MC is too expensive
Low accuracy MC simulations need much more samples to 
achieve the similar M-gPC accuracy
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Uncertainty in architecture design is important

M-gPC surrogate model for expensive cycle-level 
simulator: much less samples and mixed-type 
sampling:
•Model speedup: 800x in an analytical example. 
• In DRAM, a few samples to get accurate statistical 

information, while MC is impossible

Take-home message



THANKS
Thank you! 
Questions?


